If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+11x-72=0
a = 35; b = 11; c = -72;
Δ = b2-4ac
Δ = 112-4·35·(-72)
Δ = 10201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10201}=101$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-101}{2*35}=\frac{-112}{70} =-1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+101}{2*35}=\frac{90}{70} =1+2/7 $
| -3=8k-8-7k | | 218=74-x | | 9x2x=33 | | −2=-4+t | | 11,000-4,000=20s | | 6(1x+5)=78 | | n-15=-16 | | -1,75q-8.75=3q+7.5 | | 7-3(x+4)=15 | | 3x+1.5=3x=2 | | 17=-1-3a | | 5x-(2×-8)=53 | | x-5/10=9 | | 20-9w=415-w) | | k-2/2=-4 | | -y—-3y+-8y-10y=16 | | -d+7=34 | | Y=(x-3)2-4 | | -33+3=t-44 | | 4x+2x–8=2x+4 | | v/(-7)+1=-6 | | 6x2x=12 | | f-1=0 | | 2/3x−5=1 | | 2u+u+5u=8 | | x+16+5x+10=18. | | 1534+c=334 | | 4(x+3)+3=2x-5 | | 40=10s | | −18 = 5(2 − x) + 2 | | 2x+8=34.x= | | 7(x+4)+5=7x+9 |